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INTRODUCTION 

IN THE absence of distributed sources, steady-state heat con- 
duction in solids is governed by the partial differential 
equation 

div * (k grad T) = 0 (1) 

where k is the thermal conductivity, a physical property of 
the solid. If the thermal conductivity is approximated as a 
constant, then equation (1) reduces to the familiar Laplace’s 
equation 

VT= 0. (2) 

The problem of solving equation (1) for temperature- 
dependent thermal conductivity (k = k(T) only) can also 
effectively be reduced to that of solving Laplace’s equation 
through the application of the Kirchhoff transformation [l]. 
However, convective boundary conditions may be difficult 
to account for with classical analytical solution techniques. 

One particularly effective analytical technique for solving 
heat conduction problems governed by Laplacc’s equation 
is the method of separation of variables. The formal require- 
ments for simple separability of Laplacc’s equation in 
orthogonal, curvilinear coordinate systems have been tho- 
roughly studied and outlined by Stackel [2], Robertson [3], 
Eisenhart [4] and Moon and Spencer [S]. 

Unfortunately, relatively little information is available for 
applying the method of separation of variables to a more 
general heat conduction problem described by equation (1) 
with the thermal conductivity varying spatially, or 

k = k(u,,u,>u,) (3) 

where (u,, u2, u,) represents an orthogonal, curvilinear co- 
ordinate system. 

Heat conduction with spatially-varying thermal con- 
ductivity can arise in a number of practical applications 
including thermal contact resistance between dissimilar 
materials and heat transfer in microelectronic components. 
The goal of this work is to determine the restrictions on 
the thermal conductivity such that equation (1) is simply 
separable whenever Laplace’s equation is simply separable 
and to briefly examine the nature of the solutions which can 
then be obtained by separation of variables. 

THEORETICAL CONSIDERATIONS 

For an orthogonal, curvilinear coordinate system, 
equation (1) can be written as [6] 

where the metric coefficients 9, are defined by the trans- 
formation from the Cartesian coordinate system (x, y, z) to 
the orthogonal, curvilinear coordinate system (u,, u2, u,) 
such that 

(5) 

and 

9’919293. 

Definition I. From Moon and Spencer [5,6], if the assump- 
tion 

T= n U,(4) (6) 
,= I 

permits the separation of the partial differential equation 
into three ordinary differential equations, the equation is 
said to be simply separable. 

Theorem I. The necessary and sufficient condition for 
simple separability of Laplace’s equation in an orthogonal, 
curvilinear coordinate system with T = T(u,, IA*, UJ is that 
the metric coefficients can be written as 

where Mi, are cofactors of the first column of the Stackel 
matrix [S] as thoroughly discussed by Moon and Spencer 
[6]. The Stackel matrix is of the form 

[ 

@II @12(u,) @D,,(u,) 

ISI = %, (4) %*(u*) @23(u2) 

%I &,I @32 (%I @33 (%I 1 = [C+,{uJ; i,j = 1,2,3]. (8) 

A given coordinate system is then said to permit simple 
separability of Laplace’s equation if a Stackel matrix [S] can 
be constructed such that equation (7) holds for i = 1,2,3. 
Note that the cofactors M,, are not functions of the u,- 
coordinate. Both the cofactors M,, and the function f;{ui) 
have been tabulated for most coordinate systems of interest 
in Moon and Spencer [7]. An excellent proof of Theorem I 
is contained in Moon and Spencer [6]. 

CONDITION FOR SIMPLE SEPARABILITY 
OF EQUATION (4) 

Theorem II. Given that Laplace’s equation is simply sep- 
arable in some orthogonal, curvilinear coordinate system, 
the necessary and sufficient condition for simple separability 
of the steady heat conduction equation with spatially-vary- 
ing thermal conductivity in the same coordinate system is 
that the thermal conductivity can be written as 

where k, is an arbitrary constant and the functions o,(u,) 
describe the thermal conductivity variation in the u,-co- 
ordinate direction. The functions o,(u,) and their first deriva- 
tives are further assumed to be continuous and bounded. 

Proof. By analogy with the work of Robertson [3] and 
Moon and Spencer [5], a necessary condition for the simple 
separation of a partial differential equation in the form of 
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NOMENCLATURE 

a radius of finite cylinder in the example problem Greek symbols 

A series coefficients in the example problem 4 separation constants (j = 2, 3) 
functions of metric coefficients,f; =J(u,) 

?(A”) P t’ 
B iI?! constants for homogeneous boundary 

se ara ion constant as a function of the conditions (/, m = 1, 2) 
eigenvalues YZ chosen by criterion of equation (2 1), yi = lZ$, I 

92 metric coefficients given by equation (S), also (j = 2 or 3) 

9 = s1szs3 6 
.” 

Kronecker delta 6, = 0, i #j, aii = 1 
I,(.) modified Bessel function of the first kind of A” eigenvalue in the Sturn-Liouville problem ; 

order 7 positive roots of Ja(l.u) = 0 for the example 
J,,(a) Bessel function of the first kind of order zero problem 
J,(a) Bessel function of the first kind of order one p, v parameters describing conductivity variation 
k thermal conductivity, in general k = k(u,, u2, u,) in the example problem (equation (24)) 
KT(*) modified Bessel function of the second kind of function of v, 5 = (1 -v)/2 

order T ;n eigenfunction in the Sturm-Liouville problem 
L length of finite cylinder in the example &, element of the Stackel matrix [S’l, mi, = @Ju,) 

problem (i. j = 1, 2, 3) 

M,I cofactors of the Stackel matrix [SJ w, function which describes the thermal 

P! orthogonality weight in Sturn-Liouville conductivity variation in the u,-coordinate 

problem P, = p,(w) = f;wr, direction, o, = oi(uJ 

YJ arbitrary function in the general Sturm- fi” function in the example problem given by 
Liouville problem equation (32). 

q(r) prescribed heat flux in the example problem 
r polar coordinate Subscripts and superscripts 
S Stackel matrix, [Sl = [@,,(u,) ; i, j = 1, 2, 31 i usually refers to the u,-coordinate direction 
T temperature (i = 1, 2, 3) 

u, orthogonal, curvilinear coordinates (i = 1, 2, 3) n usually refers to an eigenvalue I, (n = 1, 
X, y, z Cartesian coordinates. 2, 3, .). 

equation (4) is evidently that 

where F,(uJ is a function of the u,-coordinate only and Gi is 
a function only of coordinates other than a,. 

Clearly equation (10) is satisfied only when the thermal 
conductivity is given by equation (9) and thus this restriction 
represents a necessary condition for simple separability of 
equation (4). 

To show that the form of the thermal conductivity vari- 
ation given by equation (9) is a sufficient condition for simple 
separability, the substitution of equation (6), (7) and (9) 
into equation (4) must produce three ordinary differential 
equations as required by Definition 1. Direct substitution 
gives 

where 6,, is the familiar Kronecker delta. 
Division of all three terms in equation (11) by T kfif,J3 

gives 

It appears at this point that simple separation has been 
effected because for M,, neither a function of ui nor zero, 
then 

i = 1,2,3. (13) 

However, no separation constants have yet been intro- 
duced and because U, can be found by direct integration, 
equation (13) does not really represent three ordinary differ- 
ential equations as required by Definition I. 

Consider now two arbitrary separation constants a2 and 
c(+ From the theory of determinants 

or thus 

and 

(14) 

(15) 

(16) 

where again Q, are elements of the Stackel matrix [SJ and 
M,, are cofactors of [SJ 

The addition of equations (12) and (16) gives 

Since again the cofactors A4,, are neither a function of U, 
nor zero, equation (17) reduces to 

i= 1,2,3 (18) 

which represents three ordinary differential equations for U, 
as required by Definition I. Thus a thermal conductivity 
variation of the form of equation (9) represents a sufficient 
condition for simple separability of equation (4) and hence 
Theorem II is proved. 

PRACTICAL CONSIDERATIONS 

Since the functionsf;(u,) and mi,(uJ are tabulated in Moon 
and Spencer [7] for most coordinate systems of interest, the 
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separation of the heat conduction equation with spatially- 
varying thermal conductivity requires only direct sub- 
stitution into equation (18). The choice of appropriate sep- 
aration constants is made by examining the homogeneous 
boundary conditions. 

The single non-homogeneous boundary condition in a 
well-posed problem is accounted for with the method of 
separation of variables by applying the orthogonality of 
eigenfunction solutions to the separated ordinary differential 
equations. If for some coordinate direction ai < a, < u: the 
homogeneous boundary conditions are of the form 

B,,uwP,2~(“:) = 0 

821(1,(n:)+822 $) = 0 

(19) 

then comparison with the general Sturm-Liouville problem 
[6] gives an orthogonality weight 

P,(U,) =.f;eV, (20) 

where 7, = I@,,,] > 0 is chosen such that for either j = 2 or 3 

a,% = /I&)?, > 0. (21) 

The I, are the eigenvalues of the Sturm-Liouville problem 

(22) 
where &‘(a!) is subject to the homogeneous boundary con- 
ditions of equation (19). 

The orthogonality relationship for the eigenfunctions 
#‘(a,) is then 

s 
U;&df’/;~iy. da, = 0 for m # n. (23) 

With the orthogonality relationship of equation (23) com- 
plete solutions to steady heat conduction problems can be 
constructed without actually knowing beforehand how to 
compute the eigenvalues /1,, or the eigenfunctions @(a,). A 
combination of Chebyshev methods [8] and asymptotic 
analysis [9] may be required to compute the ;.,I and @(a,) 
for the potentially complex but linear separated ordinary 
differential equations encountered with spatially-varying 
thermal conductivity. 

As with the Kirchhoff transformation for temperature- 
dependent thermal conductivity, only Dirichlet and Neu- 
mann boundary conditions can be accounted for with the 
classical method of separation of variables applied to prob- 
lems of spatially-varying thermal conductivity. For many 
coordinate systems this is not an extra restriction since the 
boundary condition of the third kind or the Robin condition 
cannot usually be applied where the metric coefficients g, are 
functions of coordinates other than a,. Furthermore, if a 
problem with spatially-varying thermal conductivity does 
have one or more convective boundaries, the simple sep- 
arability of the temperature distribution can still exist and 
the unknown series coefficients in the solution can be deter- 
mined by the methods outlined by Negus and Yovanovich 

[lOI. 

EXAMPLE PROBLEM 

Consider the problem shown in Fig. 1 where a prescribed 
heat flux q(r) enters the top surface of a finite cylinder and 
exits at the side surface which is maintained at T = 0. The 
thermal conductivity in the cylinder is assumed to obey the 
power-law relationship 

k = k&f/~)’ 

wherer+p>OforO<z<L 

(24) 

-klz.Ol~ (r,z=Ol =qrr, 

[, 
+ ‘\\\\\\\\\\\\\\\\\\\\\I AI=0 

dz 

z 

FIG. I. Example problem with spatially-varying thermal 
conductivity in a finite cylinder. 

If this problem geometry is compared with the circular 
cylindrical coordinate system of Moon and Spencer [7] then 

a, = r; u2=0: U2=I 

For a temperature distribution independent of 0, the sep- 
aration constants are rz = 0 and c(, = + I,*, 0. Consideration 
of the homogeneous boundary conditions at r = 0 and a 
shows that the separation cases rl = 2’ and 0 produce trivial 
solutions. For c(~ = -1’ the separated equations are 

d’R I dR 
dF+; d; +/l’R=O 

d’Z _ + z dZ _ j.2Z = 0 

dz- -_+/I dz 

(25) 

(26) 

where T(r,z) = R(r)Z(z). These separated equations are 
obtained by substituting the following information from 
Moon and Spencer [7] and equation (24) into equation (18) : 

fl =r; .f, = 1 
Q,? = -I; Q,? = I 

w, = I; W) = (z+p)’ 

The general solution to equation (25) is given in terms of 
Bessel functions of order zero. After applying the homo- 
geneous boundary conditions 

dR 
+r=O)=O: R(r=cr)=O 

the function R(r) is given by 

R(r) = 2 B,,J,(i,r) 
,r= I 

(27) 

where Jo(.) is the Bessel function of the first kind of order 
zero and 1, are the positive roots of 

J&&a) = 0, n = 1.2,3. (28) 
The solution of equation (26) can be found by comparing 

with a more general form of Bessel’s equation [I l] to give 

Z(z) = (Z+~)r[CI,(E.,,(-+/I))+ DK,(i,,(r+rc))l (29) 

where 

r !z (l-v)/2 (30) 

and I,(*) and R,(s) are modified Bessel functions of the first 
and second kinds, respectively, of order T. 

After applying the homogeneous boundary condition 
dZ/dz = 0 at z = L, the temperature distribution in the finite 
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cylinder is found to be 

where 

n= 1 

+Q,~,(&(z+~))l (31) 

The unknown coefftcients A, are determined by con- 
sidering the non-homogeneous boundary condition on z = 0 
where 

-k(r=O)~~(r,~=O)=rl(r). O<r<u. (33) 
I& 

Differentiation of equation (31) and substitution into equa- 
tion (33) then gives 

--I,- I (n”P)l. (34) 

If both sides of equation (34) are multiplied by J,(&,r)dr 
and integrated from r = 0 to o, then by the orthogonality 
of the e~genfunctions ./,(&r) on the interval 0 < r < a the 
unknown coefficients are given by 

(35) 

where jr(m) is the Bessel function of the first kind of order 
one. 

In summary the temperature distribution in the finite cyl- 
inder of Fig. I with spatially-varying thermal conductivity 
described by equation (24) is given exactly by equation (31) 
combined with equations (28) (30) (32) and (35). This exam- 
ple problem illustrates that constructing the solution to a 
steady heat conduction problem with spatially-varying ther- 
mal conductivity by the method of separation of variables is 
conceptually similar to solving Laplace’s equation by sep- 
aration of variables. The major difference is that both the 
mathematical details of the analysis and the subsequent com- 
putation of the temperature field can be potentially much 
more complex with spatially-varying thermal conductivity. 

CONCLUSIONS 

A necessary and sufficient criterion has been developed to 
determine the conditions for which the steady heat con- 
duction equation with spatially-varying thermal conductivity 
is simply separable given that Laplace’s equation is known to 
be simply separable in some chosen orthogonal, curvilinear 
coordinate system. The orthogonality relationship for the 

separated ordinary differential equations associated with 
spatially-var~ng thermal conductivity has also been exam- 
ined. 

An important corollary to the restriction on the thennai 
conductivity imposed by Theorem II is that a one-dimen- 
sional variation, regardless of its complexity, always permits 
solution by simple separation of variables assuming 
Laplace’s equation is also simply separable in the chosen 
coordinate system. 

In practice the restriction on the thermai conducti~ty 
imposed by Theorem II combined with the tedium of the 
method of separation of variables, especially for three- 
dimensional problems, may reduce the number of appli- 
cations in which the solution methods of this work will 
be favoured. However, exact solutions for spatially-varying 
thermal conductivity can still provide a method for vali- 
dating the operation of other approximate or numerical sol- 
ution techniques. 
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